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Abstract

This paper introduces Point-GN, a novel non-parametric
network for efficient and accurate 3D point cloud classi-
fication. Unlike conventional deep learning models that
rely on a large number of trainable parameters, Point-GN
leverages non-learnable components—specifically, Far-
thest Point Sampling (FPS), k-Nearest Neighbors (k-NN),
and Gaussian Positional Encoding (GPE)—to extract both
local and global geometric features. This design eliminates
the need for additional training while maintaining high per-
formance, making Point-GN particularly suited for real-
time, resource-constrained applications. We evaluate Point-
GN on two benchmark datasets, ModelNet40 and ScanOb-
jectNN, achieving classification accuracies of 85.29% and
85.89%, respectively, while significantly reducing compu-
tational complexity. Point-GN outperforms existing non-
parametric methods and matches the performance of fully
trained models, all with zero learnable parameters. Our
results demonstrate that Point-GN is a promising solution
for 3D point cloud classification in practical, real-time en-
vironments. For more details, see the code at: https:
//github.com/asalarpour/Point_GN .

1. Introduction
Point cloud classification is a critical task in 3D data

analysis and has been widely employed in various fields,

including object detection [45, 47], 3D reconstruction [36],

robotics [29], and medicine [5, 39]. Unlike 2D images that

are structured in regular grids, point clouds consist of un-

ordered and irregular sets of points, presenting unique chal-

lenges for efficient and accurate analysis. The unordered

nature and high dimensionality of point clouds make tradi-

tional 2D image processing techniques unsuitable for this

task, thereby necessitating specialized algorithms that can

handle the unique structure of 3D data.

Deep learning has significantly advanced point cloud

*These authors contributed equally to this work.
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Figure 1. Illustration of the proposed non-parametric network for

point cloud classification.

classification, with models like PointNet [20] and Point-

Net++ [21] enabling direct processing of point clouds with-

out requiring 3D voxelization or mesh generation. By treat-

ing point clouds as unordered sets of points, these mod-

els learn permutation-invariant features. However, their re-

liance on large numbers of parameters leads to higher mem-

ory usage and longer training times. For example, Point-

Net++ extends PointNet with hierarchical structures and lo-

cal feature capture but also increases computational com-

plexity, which can hinder scalability and real-time perfor-

mance.

The trend toward more complex models further com-

pounds the issue. For instance, CurveNet [15], which fo-

cuses on curve-based feature extraction, increases training

times by up to 10 times compared to PointNet++, with

little improvement in performance. Similarly, PointMLP

[11] adds 11.9 million parameters over PointNet++, achiev-

ing only a modest 0.5% gain in precision. This growing

complexity underscores the need for more efficient mod-

els that balance accuracy and computational cost, especially

for real-time applications like autonomous driving [19],

AR/VR, and medical diagnostics.

To address the high computational and memory demands
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of parametric models, recent research has explored non-

parametric methods. These approaches, such as PointClip

[42], which uses pre-trained 2D models for point cloud

classification, and Point-NN [43], which avoids learnable

weights, aim to reduce parameter sets and improve effi-

ciency. However, these methods often trade off computa-

tional efficiency for classification accuracy, highlighting the

need for further improvement.

In this paper, we propose a novel non-parametric method

for point cloud classification that introduces a Gaussian

function for positional embedding, as shown in Fig. 1. This

Gaussian embedding enhances classification accuracy by

capturing local geometric structures without requiring extra

parameters or retraining. Integrated into the non-parametric

framework of PointNet++ with Farthest Point Sampling

(FPS) and k-Nearest Neighbors (k-NN), it improves perfor-

mance while maintaining computational efficiency.

Our contributions are threefold:

• We introduce a Gaussian embedding function to

the non-parametric framework, which significantly im-

proves classification accuracy without adding compu-

tational overhead.

• We simplify the network design, eliminating unnec-

essary complexities while maintaining performance

comparable to state-of-the-art parametric models,

offering a more efficient alternative for resource-

constrained environments.

• We demonstrate the efficiency and scalability of our

approach through extensive experiments on popular

benchmarks, including ModelNet40 [34] and ScanOb-

jectNN [28], achieving competitive performance with-

out additional costs in terms of memory or computa-

tional requirements.

This method offers a practical solution for efficient, ac-

curate point cloud classification, ideal for real-time appli-

cations with limited resources, such as robotics and au-

tonomous systems [1, 14], where both accuracy and effi-

ciency are essential.

2. Related works
In this section, we provide an overview of prior ap-

proaches to 3D point cloud classification, focusing on both

projection-based and point-based methods, and introduce

recent advancements in positional encoding techniques,

which have significantly impacted model performance and

efficiency.

2.1. 3D Point Cloud Classification

3D point cloud classification methods can be divided into

projection-based and point-based approaches.

Projection-based methods convert 3D point clouds into

2D representations, such as depth maps [3, 4, 26] or voxel

grids [9, 12, 31], enabling the use of 2D image processing

techniques. However, they often lose spatial details due to

the sparsity and incompleteness of point clouds.

Point-based methods process raw 3D point clouds di-

rectly, preserving geometric information. PointNet [20]

processes points independently and aggregates global fea-

tures using max pooling but struggles with local geomet-

ric details. PointNet++ [21] improves this by introduc-

ing a hierarchical architecture for capturing local features.

Other advancements include convolutional [7, 18, 24, 27]

and graph-based models [10, 32], as well as attention and

transformer-based methods [37, 40, 46] that model long-

range dependencies.

However, these models are computationally intensive,

limiting their use in real-time applications. Efficient meth-

ods like ShellNet [44] and RandLA-Net [6] reduce memory

usage, but still face challenges with large-scale data. Con-

volutional models like KPConv [27] reduce memory over-

head through sparse convolutions but still require significant

resources.

Inspired by Point-NN [43], we propose a novel non-

parametric model for point cloud classification that im-

proves feature extraction without introducing additional

trainable parameters, thus enhancing both efficiency and

scalability.

2.2. Positional Encodings

Positional encoding was first introduced in the Trans-

former architecture [30] to inject positional information

into input sequences, such as words in a sentence, us-

ing sinusoidal functions. This method has since been

widely adopted in natural language processing and com-

puter vision, where capturing spatial relationships is criti-

cal. In point cloud processing, positional encoding allows

the model to retain spatial awareness in 3D space, partic-

ularly for applications involving coordinate-based models,

such as 2D image synthesis [16] or 3D scene reconstruc-

tion [17].

In 3D point cloud processing, positional encoding plays

a crucial role in capturing the underlying geometric re-

lationships between points. One notable application is

in Neural Radiance Fields (NeRF) [13], where sinu-

soidal encoding transforms input coordinates into higher-

dimensional feature spaces, enabling the accurate recon-

struction of fine-grained details in 3D scenes. Such ap-

proaches demonstrate the importance of encoding spatial

information when dealing with high-frequency signals, as it

accelerates network convergence and enhances the model’s

ability to capture complex geometric structures.

Building on these advancements, we propose a novel

positional encoding scheme based on Gaussian functions,
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Figure 2. Overview of the architecture of our Non-Parametric Fea-

ture Encoder. The figure illustrates the main components of Point-

GN, including Gaussian Positional Encoding (GPE), local group-

ing and feature aggregation. Each stage of the network is designed

to efficiently capture spatial relationships within the point cloud

without the need for learnable parameters.

specifically tailored for 3D point cloud classification. Un-

like sinusoidal encodings, Gaussian embeddings allow for

more flexible representation of spatial relationships in 3D

space, offering improved feature extraction and classifica-

tion performance. Our approach demonstrates that Gaus-

sian embeddings can match, and in some cases surpass, the

performance of traditional sinusoidal encodings, particu-

larly when applied to point clouds in non-parametric frame-

works.

3. The Proposed Method
In this section, we present the details of Point-GN, our

Non-Parametric Network that utilizes Gaussian Positional

Encoding (GPE) for point cloud classification. Fig. 2 pro-

vides an overview of the Point-GN framework, which high-

lights the key stages in processing point cloud data. To

ground the discussion, we first revisit the fundamental con-

cepts behind 3D point clouds and how they are typically

classified. We then elaborate on the design of our non-

parametric feature encoder and classifier, which are integral

components of Point-GN.

3.1. Background

A 3D point cloud is a collection of points in 3D space

representing the shape or structure of an object or scene.

Each point pi = (xi, yi, zi) ∈ R
3 is defined by its coor-

dinates and may have additional attributes, such as color

or surface normal vectors. Given a point cloud P =
{p1,p2, . . . ,pN}, where N is the number of points, each

point pi is represented by its coordinates (xi, yi, zi). An en-

coder extracts meaningful information from the point cloud

into a compact representation:

Encoder(P) = F ∈ R
d (1)

where F is the feature vector that encodes the essen-

tial characteristics of the point cloud into a d-dimensional

space.

For classification, the feature vector F is fed into a clas-

sifier that maps the feature vector to C classes, producing a

vector of logits y ∈ R
C :

Classifier(F) = y = (y1, y2, . . . , yC) (2)

The predicted class c is determined by selecting the class

with the highest score:

c = argmax
i

yi (3)

3.2. Gaussian Positional Encoding (GPE)

Gaussian Positional Encoding (GPE) embeds spatial

information into the feature representation of individual

points in the 3D point cloud. By transforming raw point

coordinates into a higher-dimensional space, GPE provides

the model with richer spatial context without introducing

learnable parameters. The encoding is formulated as:

γx(xi, vj) = exp

(
−‖xi − vj‖2

2σ2

)
(4)

γy(yi, vj) = exp

(
−‖yi − vj‖2

2σ2

)
(5)

γz(zi, vj) = exp

(
−‖zi − vj‖2

2σ2

)
(6)

where vj are predefined reference points, and σ is the

standard deviation that controls the focus on local vs. global

spatial information. A smaller σ captures local detail, while

a larger σ captures broader spatial patterns.

The encoded feature vector for each point is:

γ(pi) = [γx(xi, vj), γy(yi, vj), γz(zi, vj)]
V
j=1 (7)

where V is the number of reference points along each

axis.

3.3. Non-Parametric Feature Encoder

In our approach, the non-parametric feature encoder

leverages Gaussian Positional Encoding (GPE) to capture

and aggregate spatial information from 3D point clouds.

This hierarchical encoder adapts to various input configura-

tions without relying heavily on learned parameters, making

it flexible across different tasks.
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3.3.1 GPE Embedding

The embedding process begins by applying GPE to each

point pi in the point cloud P . This transformation maps the

raw 3D coordinates into a higher-dimensional feature space,

enhancing the model’s ability to understand spatial relation-

ships. As a result, each point pi is represented by a richer

feature vector γ(pi), capturing its spatial relationships more

effectively.

This transformation expands the original 3D coordinates

into a V × 3-dimensional space, where V represents the

number of reference points vj used in the encoding. These

reference values are strategically chosen or learned by the

model, often distributed uniformly between −1 and 1. The

parameter σ, controlling the width of the Gaussian function,

determines how spatial information is captured. A smaller

σ focuses on local details, while a larger σ captures more

global spatial relationships. This flexibility enables the GPE

to balance the capture of both local and global spatial infor-

mation effectively.

The GPE embedding serves as the foundational step in

our non-parametric feature encoder. By transforming raw

3D point clouds into a feature space rich in spatial context,

γ(pi) enhances the model’s ability to recognize and utilize

the underlying geometric structures of the data. This pro-

cess is integral to the effectiveness of the encoder, leading to

improved performance in tasks such as object recognition,

segmentation, and classification, where a deep understand-

ing of both local and global spatial relationships is essential.

3.3.2 Local Grouper

After GPE embedding, feature extraction proceeds through

multiple stages, each involving a local grouper, GPE ag-

gregation, and neighbor pooling. At each stage, the in-

put point cloud from the previous stage is represented as

{pi, γ(pi)}Ni=1, where pi ∈ R
3 denotes the coordinates of

point i and γ(pi) ∈ R
V×3 represents the GPE-embedded

features of that point.

The process begins with Farthest Point Sampling (FPS)

to downsample the number of points from N to N/2, se-

lecting a subset of local center points:

{pj , γ(pj)}N/2
j=1 = FPS

({pi, γ(pi)}Ni=1

)
(8)

Next, the downsampled point coordinates pj and the

original point coordinates pi are used by the K-Nearest

Neighbors (KNN) algorithm to find the K nearest neigh-

bors for each downsampled point pj . The indices of these

nearest neighbors are used to retrieve the corresponding co-

ordinates and features:

idxj = KNN(pj ,pi) (9)

The retrieved coordinates and features are:

Pj = retrieve
({pi}Ni=1, idxj

) ∈ R
K×3 (10)

Γj = retrieve
({γ(pi)}Ni=1, idxj

) ∈ R
K×(V×3) (11)

Here, Pj represents the gathered coordinates, and Γj

represents the gathered features for the point pj . The re-

trieved coordinates Pj and features Γj are then normal-

ized using the mean and standard deviation of each point’s

neighbors. These normalized coordinates and features are

then passed to the next stage for further processing.

3.3.3 GPE Aggregation

The features from the Local Grouper are then fed into the

GPE Aggregation module. Here, GPE is applied to the re-

trieved coordinates Pj to encode spatial information. These

encoded features are then weighted and combined with re-

trieved features Γj , emphasizing points closer to the center.

The updated feature representation is:

Γj ← Γj + γ(Pj)� γ(Pj) (12)

In this formulation, γ(Pj) represents the encoded spa-

tial information of the retrieved neighbors, and Γj repre-

sents the features retrieved from the nearest neighbors. The

element-wise multiplication � ensures that the final aggre-

gated features are influenced by both local features and spa-

tial encoding, effectively capturing detailed local geometry

while preserving spatial relationships.

3.3.4 Neighbor Pooling

Following GPE Aggregation, the neighbor pooling process

aggregates features using both mean and max operations

across the neighbor dimension. For each point, the pooled

features are calculated as:

Φj = Mean(Γj) + Max(Γj), ∀j ∈ {1, . . . , N/2} (13)

Here, Mean(Γj) and Max(Γj) are permutation-invariant

operations, ensuring that the order of neighbors does not

affect the pooled features.

3.3.5 Aggregation Across Stages

The non-parametric feature encoder includes four stages,

each producing pooled features Φs
j . After processing

through all stages, global pooling is applied to the results

from each stage. The final feature vector F for the non-

parametric feature encoder is obtained by concatenating the

global mean and max features from all four stages:
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Figure 3. Illustration of the non-parametric classifier pipeline. The

test feature is compared with the stored feature embeddings from

the training set, and similarity scores are computed to assign the

most likely class label based on proximity in feature space.

F =

4⊕
s=1

[
Mean(Φs

j) + Max(Φs
j)
]

(14)

This formulation captures and aggregates spatial and fea-

ture information across multiple levels by combining the

mean and max features from each stage.

3.4. Non-Parametric Classifier

To preserve the non-parametric nature of Point-GN, we

adopt a similarity-based classification approach [43]. Given

a test point cloud, its feature vector Ftest is compared to the

feature embeddings Ftrain from the training set. The classi-

fier computes a similarity score between the test and train-

ing embeddings, which is then used to assign a class la-

bel based on the closest matching features. This similarity-

driven mechanism avoids the need for traditional paramet-

ric models, maintaining the flexibility and efficiency of the

non-parametric framework.

Ftrain =

M⊕
m=1

Fm (15)

Ltrain =

M⊕
m=1

Lm (16)

3.4.1 Feature Representation and Label Embedding

Given a training set of M point clouds {Pm}Mm=1, each

belonging to one of C categories, we first extract a global

feature vector Fm for each point cloud Pm using the non-

parametric encoder. The corresponding labels {ym}Mm=1

are transformed into embedded label vectors Lm.

The process of storing these feature and label embed-

dings is shown in Fig. 3. The feature embeddings are stored

in the global feature matrix Ftrain, and the label embeddings

are stored in the label matrix Ltrain, both defined as follows:

3.4.2 Similarity-Based Classification

For a test point cloud Ptest, the non-parametric encoder gen-

erates the feature vector Ftest. We compute the similarity

between Ftest and the stored training features in Ftrain using

the following equation:

Sim = Ftest · FT
train (17)

The similarity scores in Sim are used to weight the cor-

responding label embeddings from Ltrain. The final classi-

fication logits are computed using the following activation

function:

ylogits = exp (−γ · (1− Sim)) · Ltrain (18)

Here, γ is a scaling factor, and exp(−γ ·(1−Sim)) serves

as the activation function adapted from Tip-Adapter [41],

where higher similarity scores result in stronger contribu-

tions from the corresponding labels in Ltrain.

3.4.3 Classification Decision

The predicted class label is determined by applying an acti-

vation function to the logits, selecting the category with the

highest value. In our case, we use a softmax activation for

this final step:

c = argmax(softmax(ylogits)) (19)

Through this similarity-based label integration, the clas-

sifier is able to effectively differentiate between various

point cloud instances using a simple and efficient mecha-

nism.

4. Experiments

In this section, we benchmark the performance of Point-
GN against state-of-the-art methods for 3D shape clas-

sification. We conduct experiments on two widely rec-

ognized datasets: ModelNet40 [34] and ScanObjectNN
[28]. These datasets were selected for their complemen-

tary characteristics: ModelNet40 comprises clean, synthetic

3D models, while ScanObjectNN presents more challeng-

ing real-world scenarios with occlusions and background

noise. By evaluating on these datasets, we aim to demon-

strate the robustness and versatility of our approach across

both synthetic and real-world data. Additionally, we com-

pare Point-GN to existing non-parametric methods to show-

case its efficiency and competitiveness.
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Method Acc. (%) Param.

PointNet [20] 89.2 3.5 M

PointNet++ [21] 90.7 1.5 M

PointCNN [7] 92.2 0.6 M

DGCNN [32] 92.9 1.8 M

GBNet [23] 93.8 8.4 M

CurveNet [35] 93.8 2.0 M

PointNext-S [22] 93.2 1.4 M

PointMLP [11] 94.1 12.6 M

Point-NN [43] 81.8 0.0 M
Point-GN (ours) 85.3 0.0 M

Table 1. Shape Classification on Synthetic ModelNet40 [34].
All compared methods take 1,024 points as input. We report the

accuracy without the voting strategy.

4.1. Experimental Setup

We evaluate the performance of our Point-GN method

on a system equipped with an NVIDIA RTX 4090 GPU. Al-

though Point-GN is a non-parametric method and does not

require traditional model training, the GPU significantly ac-

celerates the inference process, allowing for efficient eval-

uation across the large and diverse ModelNet40 [34] and

ScanObjectNN [28] datasets. This high-performance hard-

ware ensures that our approach can handle the complexity

and size of real-world 3D data, providing rapid evaluations

during the benchmarking process.

4.2. Dataset Details

The ModelNet40 [34] dataset consists of 12,311 CAD

models across 40 object categories, split into 9,843 samples

for training and 2,468 for testing. This dataset is widely

used for point cloud classification due to its clean, synthetic

nature, providing a controlled environment for benchmark-

ing.

In contrast, the ScanObjectNN [28] dataset presents

a more challenging real-world scenario, with 2,902 sam-

ples across 15 object categories. Objects in ScanOb-

jectNN are often occluded, cluttered, or contain background

noise, providing a closer simulation to real-world 3D data.

The dataset is divided into three official subsets: OBJ-
BG, which contains objects with background noise, OBJ-
ONLY, with objects without background, and PB-T50-RS,

featuring partial occlusions and transformations. These sub-

sets test the robustness of models under various degrees of

complexity.

For both datasets, we follow the common practice of

sampling 1,024 points from each object, as used in prior

works (e.g., PointNet++ [21], DGCNN [32]). Our model

combines maximum pooling and average pooling to en-

hance feature aggregation, inspired by DGCNN [32].

Method OBJ-BG OBJ-ONLY PB-T50-RS Param.

3DmFV [2] 68.2 73.8 63.0 -

PointNet [20] 73.3 79.2 68.2 3.5 M

PointNet++ [21] 82.3 84.3 77.9 1.5 M

DGCNN [32] 82.8 86.2 78.1 1.8 M

PointCNN [7] 86.1 85.5 78.5 -

GBNet [23] - - 80.5 8.4 M

PointMLP [11] - - 85.4 12.6 M

PointNeXt-S [22] - - 87.7 1.5 M

PointMetaBase-S [8] - - 87.9 0.6 M

Point-NN [43] 71.1 74.9 64.9 0.0 M

Point-GN (ours) 85.2 86.0 86.4 0.0 M

Table 2. Shape Classification on the Real-world ScanObjectNN
[28]. We report the accuracy (%) on three official splits of ScanOb-

jectNN: OBJ-BG, OBJ-ONLY, and PB-T50-RS. The results in

blue correspond to fully trained models, which show lower accu-

racy than our train-free method, Point-GN, which outperforms all

others.

4.3. Shape Classification on ModelNet40

We evaluate the performance of Point-GN on the Mod-
elNet40 [34] dataset in Tab. 1. Point-GN achieves an accu-

racy of 85.3%, demonstrating strong performance in syn-

thetic 3D shape classification. This result highlights Point-

GN’s ability to effectively capture both local and global

geometric features, all while maintaining a minimal model

complexity.

When compared to the non-parametric Point-NN [43],

Point-GN shows a +3.5% improvement in accuracy, de-

spite having zero trainable parameters. This demonstrates

the effectiveness of our approach in extracting meaningful

features without relying on large parameter counts. Further-

more, Point-GN achieves an inference speed of 301 sam-
ples/second (measured on our system), ensuring high ef-

ficiency for real-time applications. This is especially no-

table when compared to parametric models like PointMLP

[11], which requires 12.6M parameters to achieve a slightly

higher accuracy of 94.1%.

The combination of competitive accuracy and excep-

tional computational efficiency makes Point-GN an attrac-

tive choice for resource-constrained environments, where

real-time performance and minimal model complexity are

crucial.

4.4. Shape Classification on ScanObjectNN

On the ScanObjectNN [28] dataset (Tab. 2), Point-GN

demonstrates superior performance in real-world scenarios,

outperforming most existing methods across all three offi-

cial splits: OBJ-BG, OBJ-ONLY, and PB-T50-RS. Notably,

Point-NN [43], the only other non-parametric method for

comparison, is significantly outperformed by Point-GN. In
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Method 5-way 10-way

10-shot 20-shot 10-shot 20-shot

DGCNN [32] 31.6 40.8 19.9 16.9

FoldingNet [38] 33.4 35.8 18.6 15.4

PointNet++ [21] 38.5 42.4 23.0 18.8

PointNet [20] 52.0 57.8 46.6 35.2

3D-GAN [33] 55.8 65.8 40.3 48.4

PointCNN [7] 65.4 68.6 46.6 50.0

Point-NN [43] 88.8 90.9 79.9 84.9

Point-GN (ours) 90.7 90.9 81.6 86.4

Table 3. Few-shot Classification on ModelNet40 [34]. We com-

pute the mean accuracy (%) across 10 separate runs. The presented

results of existing methods are sourced from [25].

the most challenging split, PB-T50-RS, Point-GN achieves

a +21.5% improvement in accuracy over Point-NN, high-

lighting its robustness to occlusions and background noise

in real-world data.

Rather than using different setups for each split, we

adopted a single configuration for all three splits and aimed

to find the best average performance. The average ac-
curacy across the three splits for Point-GN is 85.89%,

demonstrating its consistency across varying conditions.

This approach ensures we identify a setup that works best

on average, rather than optimizing separately for each split.

When compared to fully trained models (shown in

blue in Tab. 2), Point-GN consistently outperforms most,

achieving higher accuracy across all splits. In particu-

lar, it surpasses models like PointNet [20], PointNet++

[21], and PointMLP [11] by substantial margins. The dif-

ference between Point-GN and the top-performing model,

PointMetaBase-S [8], is less than 2%, indicating that Point-

GN competes closely with state-of-the-art methods despite

having zero trainable parameters.

These results underscore the power of Point-GN’s non-

parametric design, which offers competitive performance

while maintaining computational efficiency and avoiding

the complexity of parameter-heavy models.

4.5. Few-shot Classification on ModelNet40

In the few-shot classification task on ModelNet40 [34]

(Tab. 3), Point-GN outperforms existing methods, demon-

strating the best performance in both the 5-way and 10-

way settings. Notably, non-parametric methods, includ-

ing Point-NN [43] and Point-GN, significantly outperform

parametric models in this scenario. While traditional deep

learning models with learnable parameters often struggle

with overfitting when only a small number of training sam-

ples are available, both Point-NN and Point-GN manage to

avoid this pitfall, achieving superior generalization.
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Figure 4. Test Speed (samples per second) on ScanObjectNN
[28] and ModelNet40 [34] datasets. The plot compares the in-

ference speed of Point-NN [43] and Point-GN on four different

datasets. Point-GN shows significant improvements in inference

speed across all datasets.

Point-GN, with its non-parametric design, achieves

higher accuracy than Point-NN [43] in 3 out of 4 config-

urations (both the 5-way and 10-way 10-shot and 20-shot

settings). In the remaining configuration (5-way 20-shot),

Point-GN matches the performance of Point-NN, under-

scoring the consistency and robustness of our approach.

Compared to traditional parametric methods, such as Point-

Net [20] and PointNet++ [21], which require more complex

training and a larger number of parameters, Point-GN ex-

cels despite having zero trainable parameters, proving its

effectiveness in few-shot learning scenarios.

These results highlight the power of our non-parametric

method, which can achieve high accuracy with limited data

and fewer resources, making it particularly suitable for ap-

plications with constrained training data.

4.6. Computational Complexity Analysis

We evaluate the computational efficiency of Point-GN in

Fig. 4, where we compare its inference speed to Point-NN

[43] by running both models on our system. Despite having

zero trainable parameters, Point-GN demonstrates signifi-

cantly faster inference across both the ScanObjectNN [28]

and ModelNet40 [34] datasets. This efficiency makes Point-

GN ideal for real-time applications, such as autonomous

driving and robotic perception.

In contrast, Point-NN [43], while also non-parametric,

achieves slower inference speeds, highlighting Point-GN as

the more suitable choice for time-sensitive tasks that require

both speed and high performance.

4.7. Ablation Study

We conducted an ablation study to evaluate the impact of

different model configurations on the performance of Point-
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Figure 5. Ablation study results showing the sensitivity of Point-GN’s performance to key hyperparameters: (a) Number of neighbors (K),

(b) Dimension of Gaussian Positional Encoding (GPE), (c) Number of stages, and (d) Sigma (σ). We compare the performance of the

model on ModelNet40 [34] (orange) and ScanObjectNN [28] (cyan) datasets, showing both the average and best performances.

GN. Specifically, we examined the effect of four key fac-

tors: the number of neighbors k in the k-Nearest Neighbors

algorithm, the dimension of Gaussian Positional Encoding

(GPE), the number of stages in the model and the standard

deviation σ of the Gaussian function.

Effect of Number of Neighbors (k). The number of

neighbors k used in the k-NN algorithm also plays a criti-

cal role in model performance. Our experiments show that

k = 120 offers the best trade-off between computational

efficiency and accuracy. Smaller values, such as k = 70,

fail to capture sufficient local context, while larger values,

like k = 130, introduce irrelevant neighbors that confuse

the model, hindering its ability to discern fine-grained geo-

metric features. The performance comparison is shown in

Fig. 5 (a).

Effect of GPE Dimension. The dimensionality of the

Gaussian Positional Encoding (GPE) significantly affects

model performance. As shown in Fig. 5 (b), increasing

the dimension up to 27 improves accuracy, achieving the

best performance in both ModelNet40 and ScanObjectNN

datasets. However, beyond 45, further increases in dimen-

sion result in diminishing returns, with accuracy slightly de-

clining. This suggests that while higher dimensions can

capture more complex features, excessively high dimen-

sions add unnecessary complexity without substantial per-

formance gains.

Effect of Number of Stages. Increasing the num-

ber of stages in the model generally improves accuracy.

The 4-stage configuration achieves the highest accuracy

of 85.3% on the ModelNet40 dataset and 85.9% on the

ScanObjectNN dataset, suggesting that deeper models are

better equipped to capture complex spatial relationships and

improve classification performance. Refer to Fig. 5 (c) for

a detailed comparison of performance across different stage

configurations.

Impact of Sigma (σ). The σ parameter of the Gaus-

sian kernel (σ) determines the degree of locality in feature

aggregation. For the ModelNet40 dataset, σ = 0.35 and

σ = 0.4 yield the highest accuracy, effectively preserving

both local and broader spatial contexts. On the other hand,

for the ScanObjectNN dataset, we find that σ = 0.3 is the

most effective, achieving the best accuracy by maintaining

a balance between capturing fine-grained details and min-

imizing noise. Smaller values (σ < 0.3) fail to aggregate

sufficient local features, while larger values (σ > 0.4) in-

troduce excessive smoothing, negatively impacting perfor-

mance. These trends are illustrated in Fig. 5 (d).

5. Conclusion

In this paper, we introduced Point-GN a novel non-

parametric network for 3D point cloud classification that

combines Gaussian Positional Encoding (GPE) with non-

learnable components such as FPS and KNN to efficiently

capture both local and global geometric structures. By elim-

inating the need for learnable parameters, Point-GN pro-

vides a highly efficient and lightweight model suitable for

real-time and resource-constrained environments. Experi-

mental results on ModelNet40 and ScanObjectNN demon-

strate that Point-GN achieves competitive accuracy, out-

performing existing non-parametric methods while requir-

ing zero trainable parameters and delivering fast inference

speeds.

For future work, we plan to extend the non-parametric

framework of Point-GN by incorporating additional point

cloud features and exploring its potential in more complex

3D tasks, such as semantic segmentation and object de-

tection, further enhancing the model’s versatility and real-

world applicability.
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