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Abstract

Autonomous vehicles (AVs) rely on deep neural net-
works (DNNs) for critical tasks such as traffic sign
recognition (TSR), automated lane centering (ALC),
and vehicle detection (VD). However, these models
are vulnerable to attacks that can cause misclassifi-
cations and compromise safety. Traditional defense
mechanisms, including adversarial training, often de-
grade benign accuracy and fail to generalize against
unseen attacks. In this work, we introduce Vehicle
Vision Language Models (V2L Ms), fine-tuned Vision-
Language Models (VLMSs) specialized for AV percep-
tion. Our findings demonstrate that V2LMs inher-
ently exhibit superior robustness against unseen at-
tacks without requiring adversarial training, main-
taining significantly higher accuracy than conven-
tional DNNs under adversarial conditions. We evalu-
ate two deployment strategies: Solo Mode, where in-
dividual V?LMs handle specific perception tasks, and
Tandem Mode, where a single unified V2LM is fine-
tuned for multiple tasks simultaneously. Experimen-
tal results reveal that DNNs suffer performance drops
of 33%-46% under attacks, whereas V?LMs main-
tain adversarial accuracy with reductions of less than
8% on average. The Tandem Mode further offers a
memory-efficient alternative while achieving compa-
rable robustness to the Solo Mode. Also, we explore
the integration of V2LMs as parallel components to
AV perception to enhance resilience against adversar-
ial threats. Our results suggest that VZLMs offer a
promising path toward more secure and resilient AV
perception systems."

1The implementation code of this work is available at
https://github.com/pedram-mohajer/V2LM
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Figure 1: An attacker casts a shadow on the stop sign,
causing the AV with a traditional TSR algorithm to
misclassify it and continue driving (red path), leading
to a collision. In contrast, with VZLM, the AV re-
mains robust and correctly stops (blue path) despite
the attack.

1 Introduction

Autonomous vehicles (AVs) are built on automated
driving systems (ADS), consisting of modular sub-
systems including perception, planning, and control.
The perception module—significantly enhanced by
advancements in deep neural network (DNN) mod-
els for tasks such as image classification and object
detection [59]—reads and processes data from sensors
such as cameras and LiDAR; this information is then
sent to the planning module, which makes decisions
on navigation and maneuvers, and subsequently to
the control module, executing these decisions to con-
trol the vehicle’s movement [49].

While these DNN models effectively recognize,
monitor, and predict the movements of nearby ob-
jects [52, 67], they are also vulnerable to physical at-
tacks that manipulate real-world environments to de-
ceive perception systems [69, 24, 38, 39]. Such phys-
ical attacks pose a significant threat to AV percep-
tion by causing misclassification and unsafe driving
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Figure 2: Accuracy comparison of NVILA, Qwen-VL,
and YOLOv5-cls on benign and adversarial inputs be-
fore and after adversarial training. VLMs maintain
high robustness with minimal trade-off, while tradi-
tional DNNs like YOLOv5-cls show greater vulnera-
bility and poorer generalization.

behaviors, as demonstrated by methods such as Drp-
Attack [48], ControlLoc [35], and SlowTrack [34].

Various defense methods have been proposed to
mitigate such attacks: defensive distillation reduces
model sensitivity but struggles to generalize across
diverse perturbations [41]; input transformations can
suppress adversarial noise but often degrade clean
data quality, lowering accuracy [20]; and provable
defenses, though theoretically robust, are computa-
tionally expensive and difficult to scale [60]. Among
these, adversarial training is the most widely adopted
defense. Although it improves robustness against
specific attacks, it often reduces generalization and
standard accuracy on clean data [43], as shown in Fig-
ure 2a, which is especially problematic in AV contexts
where high performance under normal conditions is
essential for safe and reliable operation [58].

To address these limitations and achieve both ro-
bust and generalizable models for AV perception
tasks, this work proposes a novel finding: fine-
tuned VLMs inherently exhibit robustness against un-
seen adversarial attacks on AV perception systems
even without adversarial training, significantly out-
performing DNNs. As shown in Figure 2(b), VLMs
such as Qwen-VL [4] and NVILA [32] demonstrate
strong resilience, achieving 82.93% and 98.04% accu-
racy respectively against adversarial examples with-
out adversarial training. In contrast, the YOLOv5-
cls [26, 44] model suffers a drastic drop from 94.88%
accuracy on benign inputs to just 55.82% on adver-
sarial ones. Based on this observation, we introduce
fine-tuned VLMs for the first time as a robust AV
perception module, naming them Vehicle Vision Lan-
guage Models (V2LMs) and comprehensively evalu-

ating them in the AV context.

This paper evaluates six VLMs, namely
LLaVA-7B, LLaVA-13B-LoRA [30], MoE-LLaVA [28],
MobileVLM [15], Qwen-VL-7B, and NVILA-8B for
their potential as auxiliary in-vehicle components to
enhance perception performance in the presence of
attacks targeting perception algorithms. The first
four models are based on LLaMA [56], while the last
is based on Qwen [3], selected for its state-of-the-art
performance in multimodal tasks and its efficiency
in offline operation—an essential feature for our
application. In addition to these VLMs, the study
also evaluates task-specific DNN models, including
YOLOv5-cls [26, 44] for Traffic Sign Recognition
(TSR), CLRerNet [21] for Automated Lane Center-
ing (ALC), and YOLOv5-dt for Vehicle Detection
(VD), as strong baselines under both benign and
adversarial conditions.

The study begins by evaluating the VLMs’ zero-
shot performance on key AV tasks, including (i) TSR,
(ii) ALC, and (iii) VD as part of Object Detection
(OD). Subsequently, they are fine-tuned specifically
for these tasks to better align them with AV applica-
tions, with their performance reassessed to determine
improvements (RQ1). We refer to each fine-tuned
model as a Vehicle Vision-Language Model (VZLM),
highlighting its specialization for AV tasks. Addi-
tionally, the task-specific DNN-based models are fine-
tuned on the same training dataset as the VLMs, en-
suring a fair comparison of their capabilities under
identical conditions.

Then, the effectiveness and resilience of both DNN
models and V2LMs are tested using unseen adver-
sarial examples (AEs) against three distinct attacks
targeting AV perception algorithms (RQ2): (1) Ro-
bust and Accurate UV-map-based Camouflage at-
tack (RAUCA) to deceive VD algorithms [70], (2) a
physical-world adversarial attack known as the Dirty
Road Patch (DRP-Attack) to compromise DNN-
based automated lane centering (ALC) models [48],
and (3) shadows cast on traffic signs to attack TSR
algorithms [69]. As shown in Figure 1, the VZLM
improves robustness against an adversarial attack on
a traffic sign, helping the AV avoid a collision.

The study then compares two distinct designs for
utilizing V?LMs and evaluates their performance on
the three aforementioned AV tasks and AEs (RQ3).
The first design, termed Solo Mode, involves sep-
arate V2LMs, each fine-tuned individually for one
of the AV tasks. The second design, named Tan-
dem Mode, uses a single V2LM fine-tuned simulta-
neously for all three AV tasks, aiming to improve ro-
bustness against various attack types. By comparing
these two designs, we aim to determine whether a



unified model can achieve robustness across multi-
ple tasks and adversarial conditions as effectively as
task-specific models.

Finally, we discuss the feasibility of integrating a
VZLM as a parallel component within AV systems to
bolster the perception module against attacks. Given
the critical need for low latency to ensure real-time
decision-making in autonomous driving, VZLM’s la-
tency is evaluated relative to the perception system
and human reaction times. This assessment aims to
determine whether VZLM can operate within strict
real-time constraints without adversely impacting the
vehicle’s responsiveness.

This paper makes the following contributions:

e This work proposes a novel finding that fine-
tuned Vision Language Models (VLMs) inher-
ently exhibit superior robustness against unseen
adversarial attacks compared to task-specific
DNNs.  We highlight a critical limitation of
traditional defense methods, such as adversar-
ial training: while adversarial training aims to
improve robustness, it significantly degrades the
benign accuracy of traditional DNNs while pro-
viding only limited improvements against adver-
sarial examples. In contrast, VLM-based mod-
els achieve strong adversarial robustness while
maintaining high benign accuracy.

e We introduce Vehicle Vision Language Models
(V2LMs), fine-tuned VLMs specifically for AV
perception tasks: TSR, ALC, and VD. We fur-
ther propose two deployment strategies: Solo
Mode, where separate VLM are fine-tuned indi-
vidually for each task, and Tandem Mode, em-
ploying a single unified V2LM across multiple
perception tasks in same time.

e We conduct comprehensive experiments to eval-
uate the robustness of traditional DNN models
and V?LMs under adversarial conditions. Tra-
ditional DNN models experience performance
drops of 33%-46% under attacks, whereas
V2LMs achieve significantly smaller reductions
(less than 8% on average), consistently maintain-
ing high adversarial accuracy without relying on
additional defense mechanisms.

2 Related Work

Large Language Models in Autonomous Driv-
ing. Recent work has demonstrated the potential
of LLMs in the context of AVs, particularly enhanc-
ing perception, control, and motion planning tasks.

Table 1: Zero-shot performance of VLMs on AV tasks
(Solo Design).

Task Model Accuracy F1l-Score Precision Recall
LLaVA-7B 8.23% 9.19% 2.38% 2.19%
LLaVA-13B-LoRA 13.51% 15.03% 4.93% 6.04%

TSR MoE-LLaVA 1.19% 1.63% 2.06% 0.48%
MobileVLM 1.27% 0.95% 1.15% 0.81%
Quen-7B 7.01% 1.73% 4.52% 6.08%
NVILA-8B 31.24% 29.80% 29.24% 30.31%
LLaVA-7B 37.16% 36.56% 42.71% 29.33%
LLaVA-13B-LoRA 38.20% 38.12% 45.86% 25.64%

ALC MoE-LLaVA 35.41% 28.84% 29.68% 21.39%
MobileVLM 20.71% 24.60% 28.38% 21.71%
Quen-7B 26.96% 11.67% 7.45% 26.97%
NVILA-8B 50.91% 51.18% 51.44% 50.91%
LLaVA-7B 77.91% 64.01% 88.09% 51.61%
LLaVA-13B-LoRA 91.26% 84.46% 89.82% 80.23%

VD MoE-LLaVA 75.61% 65.16% 87.95% 50.46%

MobileVLM
Qwen-7B
NVILA-8B

60.64%
75.44%
92.06%

67.83%
82.57%
92.01%

71.43%
94.38%
91.82%

64.57%
75.44%
92.06%

Regarding perception systems, LLMs utilize exter-
nal APIs to access real-time information sources, in-
cluding traffic reports, and weather updates, which
significantly enrich the vehicle’s ability to gain a
comprehensive understanding of its environment [16].
Aldeen et al. [2] investigate the application of Large
Multimodal Models (LMMs) for enhancing the cy-
bersecurity of AVs. Concerning control, LLMs en-
able the adjustment of control settings according to
driver preferences, thereby personalizing the driving
experience [50].

Additionally, LLMs enhance transparency by pro-
viding detailed explanations of each step in the con-
trol process. These capabilities extend to navigation
improvements; e.g., LLMs effectively process real-
time traffic data to identify congested routes and sug-
gest alternative paths, significantly optimizing navi-
gation for both efficiency and safety [53]. For motion
planning tasks, LLMs leverage their advanced natu-
ral language understanding and reasoning capabili-
ties [37]. This allows for enhanced user-centric com-
munication, enabling passengers to articulate their
intentions and preferences in everyday language. Fur-
thermore, LLMs analyze textual data from sources
such as maps, traffic reports, and real-time updates
to make high-level decisions that optimize route plan-
ning [40].

Adversarial Threats and Defenses. Adversar-
ial Examples (AEs) were first defined by Szegedy et
al. [55] as subtly modified inputs designed to fool
DNNs. These minor, often imperceptible alterations
can drastically alter a DNN’s predictions [51, 9]. Sev-
eral studies have demonstrated the vulnerability of
AV perception systems to AEs. Kong et al. [27] in-
troduced PhysGAN, a GAN-based framework that
generates AEs resilient in the physical world, capable
of misleading ADS throughout an entire trajectory.
Similarly, Eykholt et al. [18] showed that even plac-



ing a sticker on a stop sign could deceive the AV’s
TSR.

To counter these vulnerabilities, various defense
mechanisms have been proposed. Adversarial train-
ing, proposed by Madry et al. [36], involves training
models on both clean and AEs to enhance robust-
ness. Defensive distillation, introduced by Papernot
et al. [41], aims to reduce the model’s sensitivity to
perturbations by smoothing decision boundaries. Ro-
bust optimization techniques, discussed by Wong and
Kolter [60], improve the model’s resistance to adver-
sarial attacks through advanced optimization meth-
ods. Also, input preprocessing techniques, such as
those outlined by Guo et al. [20], involve denoising or
transforming inputs to mitigate the effects of adver-
sarial perturbations.

3 V?LM as a Defense Mecha-
nism

3.1 Overview

The perception system in AVs is responsible for inter-
preting the environment through sensor data, such as
images, to enable safe and efficient operation. This
system performs essential tasks including TSR, ALC,
and and VD which is part of object detection [65].
TSR enables the vehicle to follow road rules by rec-
ognizing traffic signs [57], ALC keeps the vehicle
centered within its lane by identifying road mark-
ings [17], and VD detects and classifies other vehi-
cles [8, 11]. The perception system (PS) can be rep-
resented as a function, shown in Equation 1, which
takes an input image Z € RT*W>3 and outputs the
results of TSR, ALC, and VD. Specifically, TSR out-
puts the detected traffic sign’s class and bounding box
if a sign is present; ALC provides a classification for
the appropriate steering command; and VD returns
the bounding box and class of any detected car.

TSR(I) : Clstmjﬁc—sign
ALC(I) : Clssteering
VD(I) : (Clsvehiclm BBO'rvehiCle)

PS(1) - (1)

where Cls denotes class and BBox denotes bounding
box.

AEs can interfere with the perception system by
causing errors in these modules. An AE, Z.qv, is
crafted by adding a small perturbation § to an orig-
inal input Z such that the target module’s output
changes undesirably:

Tagw =1+ 57 ||6|| <€ and f(Iadv) 7é f(I)

(2)
where f denotes the specific target module in the
AV’s perception system, which can be the TSR, ALC,
or VD module. This perturbation d, constrained by e,
represents a small, controlled modification designed
to be imperceptible, thereby ensuring that 7,4, visu-
ally resembles Z. Despite this, the adversarial pertur-
bation may lead to misclassification of traffic signs,
incorrect lane-following commands, or faulty detec-

tion of objects.

where

3.2 Vision Language Model (VLM)

VLMs, by integrating visual and textual data [66],
have the potential to enhance perception tasks by
enabling a more comprehensive understanding of the
environment. A pre-trained VLM takes an image and
a text prompt as inputs to generate a relevant re-
sponse:

VLMyr(Z, Prompt) — Generated-Response  (3)

This potential arises from their several key
strengths:  their multimodal learning capability,
which allows them to correlate visual and textual
information simultaneously [33]; their robustness to
variability, which enables them to generalize well
across different environments due to extensive train-
ing on diverse datasets [46]; their contextual under-
standing, which leverages textual data to enhance the
interpretation of visual scenes [68]; and their compre-
hensive feature extraction, which combines features
from both visual and textual data [5]. For instance,
VLMs could enhance ALC by interpreting road mark-
ings and reading associated signs. In VD, VLMs
could recognize and classify objects like vehicles by
analyzing visual data along with bounding box co-
ordinates. Similarly, VLMs could improve TSR by
understanding text on signs, such as speed limits or
warnings, to ensure the car follows road rules accu-
rately.

3.3 Vehicle Vision Language Model
(VELM)

Fine-tuning VLMs on AV-specific tasks is essential
for optimizing their performance and enabling adap-
tation to domain-specific challenges such as variations
in lighting, road conditions, and traffic scenarios; the
resulting fine-tuned VLM is referred to as V2LM. For
LLaVA, this fine-tuning process involves adjustments



to key components. The vision encoder, implemented
as CLIP ViT-L/14 [42], extracts visual features from
input images. The language model, based on Vicuna
(a fine-tuned variant of LLaMA) [14], interprets tex-
tual prompts. A cross-modal attention module inte-
grates the modalities, and all components are jointly
optimized via visual instruction tuning [31] to align
with autonomous vehicle (AV) tasks.

Qwen-VL adopts a modular architecture com-
prising an OpenCLIP ViT-bigG visual encoder [13],
a single-layer cross-attention adapter with learn-
able queries, and a Qwen-7B language model [3].
The adapter compresses image features to fixed-
length sequences, enabling efficient visual grounding
and fine-grained perception. Its three-stage train-
ing pipeline includes weakly supervised pretraining
on large-scale image-text pairs, multi-task visual-
language pretraining, and supervised instruction tun-
ing. N'VILA builds on this by incorporating a “scale-
then-compress” design, which first increases spatial
and temporal input resolution and then compresses
visual tokens for efficient processing. Its architec-
ture consists of a SigLIP-based vision encoder [64], a
lightweight MLP projector, and a Qwen2-based lan-
guage model [63]. For fine-tuning, NVILA applies
lower learning rates to the vision encoder’s Layer-
Norms while optimizing the language model. This
allows robust AV adaptation under limited compute
budgets [32].

LoRA (Low-Rank Adaptation) [22] offers an effi-
cient alternative by focusing on specific parameters
within the model. Only low-rank matrices are intro-
duced in certain layers — primarily within the self-
attention and feedforward blocks — allowing the ma-
jority of the pre-trained parameters to remain frozen.
This technique reduces the memory and computa-
tional load while achieving task-specific adjustments
by updating only the new, smaller matrices. By lever-
aging fine-tuning techniques for AV tasks and the ef-
ficiency gains of LoRA, exploring VZLMs as a so-
lution to AV perception challenges has the poten-
tial to address critical limitations of existing meth-
ods, enhancing robustness against adversarial attacks
while avoiding the performance degradation common
in traditional defenses.

Solo vs. Tandem Design Comparison. Deploy-
ing V2LMs to enhance robustness against AEs in AVs
raises important considerations for their implementa-
tion. Given the diverse range of tasks that AVs must
perform, it is crucial to determine the best strategy
for utilizing them. One approach involves using a
separate VZLM for each specific AV task to improve
robustness within each module, ensuring specialized
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and precise detection capabilities. This design, re-
ferred to as Solo Mode, is illustrated in Figure 3a,
where individual V2LMs are dedicated to tasks such
as TSR, ALC, and VD. The formal representation of
this design is:

Output; = VQLMZOM(DataZ-, Prompt;) (4)

where i € {TSR,ALC, VD}. Here, Data; denotes
the dataset specific to each perception task T;,
and Prompt; is the prompt customized to fine-tune
V2LM.,, for that particular task, ensuring task-
specific optimization.

Alternatively, a single V2LM can handle all AV
tasks in a tandem approach, providing a unified
method for improving robustness across multiple
modules, as depicted in Figure 3b. In this design,
multiple image-query pairs—each corresponding to
a different task—are combined into a single input,
where images are concatenated using a separator, and
queries are merged in the same order. The model
processes this structured batch simultaneously within
one forward pass, extracting task-specific outputs for
each image-query pair independently while treating
the collection as a cohesive input during execution:

{Outputpgp, Output 1 ¢, Outputypt =

5
VQLMtandem(Da'ta'alla Promptall) ( )

where Datay;; represents the combined dataset of
all tasks, and Prompt,,; includes the concatenated
prompts corresponding to each task. Moreover, a sin-
gle VALM could reduce memory and computational
overhead, which is critical in the resource-constrained
environment of AVs. In such systems, optimizing
both efficiency and memory is vital, making a uni-
fied VLM a more practical solution.

VZLM-Augmented Perception Systems. Inte-
grating VZLMs with AV perception systems offers the

Datavyp



potential to strengthen resilience against AEs in real-
time. Currently, AV perception systems face signifi-
cant limitations in mitigating attacks, which can lead
to dangerous misinterpretations of sensor data. As
Cao et al. [10] demonstrated, despite efforts to en-
hance the security of AV perception, significant vul-
nerabilities persist and traditional detection mecha-
nisms often fail to mitigate these threats, leading to
potentially dangerous consequences for AV decision-
making and safety.

By integrating V2LM in the end-to-end AV stack,
AVs can benefit from its ability to process data,
thereby working in parallel with perception tasks to
enhance robustness and support accurate decision-
making. The outputs of the perception system and
V2LM can then be used by the downstream planning
and control modules to act accordingly in the pres-
ence of AEs. This context is depicted in Figure 4.

It is crucial to evaluate the latency of V2LM inte-
gration to ensure it can enhance robustness against
AEs in real-time without affecting the efficiency of the
perception system. AV vision algorithms can process
images at a rate of 2-4 frames per second (fps), which
corresponds to approximately 250-500 ms per image
[6]. As a result, V°LM should process inputs within
the required real-time constraints to support robust
perception.

4 Experimental Evaluation

4.1 Experimental Setup

To evaluate the efficacy of V2LMs, the focus was on
three critical tasks: Traffic Sign Recognition (TSR),
Automated Lane Centering (ALC) and Vehicle De-
tection (VD). For the former, the German Traffic
Sign Recognition Benchmark (GTSRB) [54] was uti-
lized, which includes images captured under vari-
ous conditions such as different lighting and dis-
tances. Each picture from this dataset, which has
42 classes, was sent with the prompt ”Identify this
traffic sign.” to the respective VZLM. For the ALC
task, a dataset was generated using the CARLA sim-
ulator [12], which includes 6,000 training and 2,000
testing images. These images, taken from the driver’s
perspective under various weather conditions and
times of day, are classified into three categories indi-
cating the next move: Straight, Left, and Right. The
prompt used for this task was, "As a car driver, at
which direction should you turn the steering wheel?”

For VD, CARLA was also used to create 7,000
training and 3,000 testing images. Captured from dif-
ferent viewpoints, under diverse weather conditions,
at various times of day, and from different distances,
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Figure 4: Possible integration of VZLM with per-
ception system for attack mitigation. I oaqview is the
image captured by AV cameras, with the output sent
to the planning and control modules for action.

these images are categorized into Car presence and
Car absence. If a car is present, the bounding box
coordinates are provided with x and y representing
the center, and H and W indicating the height and
width of the box. The prompt used for this task was,
”If a car is detected, provide the center coordinates
and the dimensions of the bounding box for the car”.
The evaluation began with assessing the VLMs’
performance on zero-shot tasks across the test
datasets. Subsequently, these VLMs were fine-tuned
on AV-specific training data — yielding VZLMs—
with their performance re-evaluated on the same test
datasets to ensure comparability. The objective is to
use a VLM to enhance the ALC, TSR, and VD mod-
ules within the AV perception system against adver-
sarial attacks. In the next step, AEs were generated
from the same test datasets to assess robustness.
Although the fine-tuned models were trained on
AV-specific data, the AEs remained unseen dur-
ing training, allowing a reliable evaluation of each
V2LM’s resilience to attacks on TSR, ALC, and VD.
To achieve this, three types of black-box attacks were
implemented. The first type of attack involves adver-
sarial manipulation of traffic signs. In the study by
Zhong et al. [69], shadows are utilized to conduct at-
tacks on TSR algorithms, as shown in Figure 5a.
This method employs shadows as a non-invasive
mechanism to create physical AEs. By optimizing
shadow properties such as shape and opacity using
a differentiable renderer, the technique manipulates
images under black-box conditions to induce misclas-
sifications. It achieves a success rate of 90.47% on the
GTSRB dataset, demonstrating its effectiveness and
highlighting the vulnerabilities of current detection
systems to such subtle manipulations.
The second type of attack targets the ALC mech-
anism of AVs. In the study by Sato et al. [48], the
Dirty Road Patch (DRP) attack framework specifi-



Table 2: Comparison of V2LM Performance in AV Tasks. Green Color shows Improvement of Tandem over
Solo Model. LLaVA-13B is abbreviated for LLaVA-13B-LoRA.

Accuracy F1l-Score Precision Recall
Task Model Solo Tandem Diff Solo Tandem Diff Solo Tandem Diff Solo Tandem Diff
LLaVA-7B 95.93% 97.38% 1.45% 94.62% 91.22% -3.40% 94.94% 91.08% -3.86% 94.31% 91.37% -2.94%
LLaVA-13B 97.15% 98.14% 0.99% 96.09% 93.21% -2.88% 96.25% 92.35% -3.90% 95.94% 94.10% -1.84%
TSR MoE-LLaVA 95.24% 96.91% 1.67% 94.73% 95.78% 1.05% 94.51% 95.26% 0.75% 94.96% 96.31% 1.35%
MobileVLM 88.19% 90.34% 15% 87.68% 90.18% 2.50% 86.17% 90.73% 4.56% 89.25% 89.65% 0.40%
Quen-7B 95.80% 94.13% -1.67% 95.78% 94.27% -1.51% 95.96% 94.63% -1.33% 95.64% 93.88% -1.76%
NVILA-8B 99.04% 99.14% 0.1% 99.10% 99.20% 0.1% 99.11% 99.19% 0.08% 99.13% 99.14% 0.01%
LLaVA-7B 98.11% 95.41% -2.70% 98.05% 95.24% -2.81% 98.20% 95.21% -2.99% 97.91% 95.29% -2.62%
LLaVA-13B 99.30% 98.31% -0.99% 99.46% 97.85% -1.61% 99.46% 98.32% -1.14% 99.47% 97.40% -2.07%
ALC MoE-LLaVA 96.86% 92.53% -4.33% 96.23% 91.83% -4.40% 97.63% 92.37% -5.26% 96.85% 91.30% -5.55%
MobileVLM 84.41% 86.61% 2.20% 87.68% 89.53% 1.85% 86.17% 88.93% 2.76% 89.26% 90.10% 0.84%
Qwen-7B 93.75% 93.91% 0.16% 93.83% 93.76% -0.07% 94.39% 94.48% 0.09% 93.27% 93.05% -0.22%
NVILA-8B 99.51% 99.41% -0.1% 99.45% 99.52% 0.07% 99.34% 99.44% 0.1% 99.55% 99.61% -0.11%
LLaVA-7B 95.84% 91.90% -3.94% 94.56% 92.82% -1.74% 95.12% 94.71% -0.41% 94.01% 91.21% -2.80%
LLaVA-13B 97.05% 98.96% 1.91% 96.76% 95.97% -0.79% 97.33% 97.88% 0.55% 96.21% 94.14% -2.07%
VD MoE-LLaVA 95.52% 93.42% -2.10% 94.78% 92.30% -2.48% 95.31% 93.83% -1.48% 94.27% 90.82% -3.45%
MobileVLM 86.61% 88.01% 1.40% 88.42% 89.38% 0.96% 86.76% 87.52% 0.76% 90.15% 91.34% 1.19%
Qwen-7B 96.02% 95.01% -1.01% 96.55% 96.17% -0.38% 97.76% 97.35% -0.41% 94.91% 95.01% 0.10%
NVILA-8B 99.93% 99.95% 0.02% 95.90% 99.84% -0.06% 99.81% 99.79% -0.02% 99.88% 99.91% 0.1%

LAL

) Shadow Attack

m”" .
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Flgure 5: Examples of adversarial attacks targeting
AV perception.

cally targets ALC systems in AVs, exploiting vulner-
abilities in deep learning-based lane detection. This
method employs an optimization-based approach to
systematically generate these patches, as illustrated
in Figure 5b, considering real-world conditions such
as lighting and camera angles to ensure effectiveness
across different environmental scenarios. The opti-
mized DRPs cause the AV to make incorrect steering
decisions, which were demonstrated to be highly suc-
cessful in real-world driving scenarios with a success
rate exceeding 97.5%

Figure 5¢ shows the third type of attack which fo-
cuses on the adversarial camouflage of vehicles. Zhou
et al. [70] propose a physical adversarial attack known
as the Robust and Accurate UV-map-based Cam-
ouflage Attack (RAUCA) to deceive VD algorithms
such as YOLOv3 [45]. It employs a technique utiliz-
ing a differentiable neural renderer, which allows for
the optimization of adversarial camouflages through
gradient back-propagation, enhancing both the ro-
bustness and precision of the attacks under varying
environmental conditions. Their method achieved an
attack success rate of 97.48% on the target detection
models, demonstrating the significant vulnerability of
these systems to such sophisticated camouflage at-
tacks.

4.2 RQ1: Fine-Tuning Increases De-
tection Performance

Table 1 shows VLMs’ zero-shot performance on the
test dataset, which performed poorly in ALC and

TSR tasks, indicating difficulties in these specific AV
applications. Although the models demonstrated de-
cent performance in the VD task, this success may
partly be due to their pre-training on large, diverse
image datasets, which likely enhanced their general
visual recognition capabilities. However, they strug-
gled to detect objects in images taken during dark-
ness, rain, or when the objects were far away, showing
their difficulty in maintaining high performance un-
der varying and challenging environmental conditions
despite their general visual understanding capabili-
ties.

To improve their performance, these models were
fine-tuned using the same training datasets and
prompts as before, and then their performance was
re-evaluated with the same test dataset. Table 2
shows notable accuracy improvements for all tasks
after fine-tuning. For ALC, accuracy increased from
20.71%-50.91% to 86.61%-99.51%. For TSR, accu-
racy saw a substantial rise from 1.19%-31.24% to
90.34%-99.14%. In the VD task, accuracy improved
from 60.64%-92.06% to 88.01

These findings suggest that although they initially
underperformed on AV tasks, fine-tuning them with
relevant datasets can lead to substantial performance
improvements, showing their potential utility in AV
applications. Intersection over Union (IoU) measures
the overlap between the predicted output and the
ground truth in tasks like object detection. A higher
IoU indicates more accurate localization, making it
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Figure 6: IoU values before and after fine-tuning.



a crucial metric for evaluating model performance
in AV perception tasks. After fine-tuning, the IoU
values improved significantly, with LLaVA-7B increas-
ing from 0.041 to 0.964, LLaVA-13B-LoRA from 0.063
to 0.987, MoE-LLaVA from 0.038 to 0.946, MobileVLM
from 0.013 to 0.926, Qwen-7B from 0.018 to 0.9578,
and NVILA-8B from 0.183 to 0.9768, as shown in Fig-
ure 6.

4.3 RQ2: V?’LMs Demonstrate Ro-
bustness under Attacks

Adversarial attacks pose a serious threat to deep
learning-based AV perception systems. Prior works
have shown that DNN models suffer significant per-
formance degradation across core AV tasks, including
TSR, ALC, and VD, as summarized in Table 5. For
example, the GTSRB-CNN model accuracy collapses
to just 1.77% under the Shadow Attack [69], and
even adversarial training—one of the most promi-
nent defense methods—only modestly improves accu-
racy to 25.57%. Similarly, for ALC, OpenPilot-ALC
performance degrades dramatically to 2.50% under
the DRP Attack [48], with established defense strate-
gies such as JPEG compression [20], Gaussian noise
addition [61], and autoencoder-based denoising [19]
achieving negligible improvements (around 3%). In
VD, YOLOv3 experiences a drastic accuracy drop to
2.52% under RAUCA Attack [70], with no effective
defense method proposed.

Building on these findings, we conduct our own ro-
bustness evaluation. To provide a fair and rigorous
comparison, we evaluated traditional task-specific
DNNs—YO0OLOv5-cls [26, 44] (TSR), CLRerNet [21]
(ALC), and YOLOv5-dt (VD)—on benign and pre-
viously unseen adversarial datasets (Table 3). Our
results confirm severe performance degradation, with
accuracy reductions of 39.06% for TSR, 40.40% for

Table 3: Performance of DNN models evaluated on
benign (B) and unseen adversarial (A) datasets across
AV tasks: TSR, ALC, and VD. The difference (Diff)
indicates the accuracy degradation caused by adver-
sarial attacks.

Task Model Type Accuracy F1-Score Precision Recall
A 55.82% 58.10% 60.56% 55.82%
TSR Yolovs-cls B 94.88% 93.44% 94.88% 93.92%
Diff -39.06% -35.34% -34.32%  -38.10%
A 50.51% 44.86% 47.66% 50.51%
ALC  CLRerNet B 90.91% 90.83% 91.44% 90.91%
Diff -40.40% -45.97% -43.78%  -40.40%
A 62.27% 57.44% 51.37% 64.11%
VD Yolov5-dt B 97.01% 96.60% 96.66% 97.01%
Diff -34.74% -39.16% -45.29%  -32.91%

ALC, and 32.91% for VD, clearly highlighting their
vulnerability to novel attacks.

In contrast, our evaluations of VZLMs under the
same unseen adversarial conditions reveal inherently
superior robustness. Specifically, V2LMs experi-
enced substantially smaller accuracy drops: only
8.62%-15.81% for TSR, 4.94%-14.32% for ALC,
and 5.23%-7.06% for VD, consistently maintain-
ing high adversarial accuracy without additional de-
fenses. These results strongly support the potential
of V2LMs to enhance robustness and reliability of AV
perception systems.

4.4 RQ3: Tandem V?LMs Provide
Similar Performance at Lower
Memory Footprint

This section evaluates whether a single tandem VZLM
can handle multiple defense tasks in detecting AEs
across AV systems, compared to using separate solo
V2LMs for each task. To assess this, VLMs are fine-
tuned for three tasks — TSR, ALC, and VD — simul-
taneously using the same prompts. After fine-tuning,
both solo and tandem V?LMs were then evaluated on
each task to determine its performance on the same
test data.

Table 2 presents the evaluation results for the tan-
dem design in non-adversarial scenarios, where a sin-
gle V2LM was trained to handle all three tasks simul-
taneously. The results reveal that the tandem design
achieves high accuracy across perception tasks, often
matching or surpassing the performance of solo mod-
els. This shows the effectiveness of the tandem de-
sign in maintaining robust performance across diverse
tasks. Table 4 further demonstrates the resilience of
V2LMs in AV tasks under adversarial conditions.

MobileVLM, MoE-LLaVA, LLaVA-7B, NVILA-8B,
Qwen-VL, and LLaVA-13B-LoRA allocated 6.03GB,
11.21GB, 13.56GB, 15.23GB, 16.58GB, and 26.15GB
of storage, respectively. These results suggest that a
single tandem VZLM can generalize well across mul-
tiple tasks, providing robust performance comparable
to the solo design, which requires 3x more storage for
separate models. The tandem design offers a signif-
icant advantage in efficiency by maintaining similar
performance while requiring much less storage.

5 Discussion

AV perception systems typically target latencies be-
low 100 milliseconds to meet real-time operational
requirements, especially in high-speed driving con-
texts [25]. In our experiments, the inference time



Table 4: Comparison of V2LM Performance against AEs. Green Color shows Improvement of Tandem over
Solo Model. LLaVA-13B is abbreviated for LLaVA-13B-LoRA.

Accuracy F1l-Score Precision Recall
Task Model Solo Tandem Diff Solo Tandem Diff Solo Tandem Diff Solo Tandem Diff
LLaVA-7B 80.12% 86.51% 6.39% 86.44% 85.89% -0.55% 85.24% 86.12% 0.88% 87.69% 85.67% 2.02%
LLaVA-13B 86.53% 89.01% 2.48% 86.08% 88.95% 2.87% 85.13% 89.31% 4.18% 87.06% 88.60% 1.54%
TSR MoE-LLaVA 80.03% 81.52% 1.49% 80.75% 82.34% 1.59% 82.13% 83.26% 1.13% 79.43% 81.45% 2.02%
MobileVLM 79.57% 79.13% -0.44% 77.55% 79.88% 2.33% 78.02% 80.75% 2.73% 77.10% 79.04% 1.94%
Quen-7B 82.83% 81.66% -1.17% 83.16% 83.43% 0.27% 85.73% 86.52% 0.79% 80.57% 80.77% 0.20%
NVILA-8B 86.04% X% -X% 87.15% X% -X% 90.28% X% -X% 86.09% X% -X%
LLaVA-7B 86.07% 84.83% -1.24% 87.01% 85.38% -1.63% 86.68% 84.65% -2.03% 87.53% 86.13% -1.40%
LLaVA-13B 90.05% 86.69% -3.36% 90.69% 87.38% -3.31% 89.67% 86.34% -3.33% 91.75% 88.46% -3.29%
ALC MoE-LLaVA 82.54% 82.26% -0.28% 83.27% 83.06% -0.21% 84.46% 82.49% -1.97% 82.13% 83.65% 1.52%
MobileVLM 78.21% 78.23% 0.02% 80.92% 81.21% 0.29% 83.16% 81.96% -1.20% 78.80% 80.49% 1.69%
Qwen-7B 88.81% 86.57% -2.24% 89.48% 85.48% -4% 91.06% 89.61% -1.45% 88.01% 86.57% -1.44%
NVILA-8B 99.25% X% -X% 99.13% X% -X% 99.01% X% -X% 99.00% X% -X%
LLaVA-7B 89.23% 88.02% -1.21% 87.84% 86.59% -1.25% 89.06% 87.89% -1.17% 86.67% 85.33% -1.34%
vD LLaVA-13B 91.82% 90.09% -1.73% 90.72% 90.41% -0.31% 90.10% 91.03% 0.93% 91.35% 89.80% -1.55%
MoE-LLaVA 88.46% 86.54% -1.92% 87.16% 86.21% -0.95% 88.28% 86.77% -1.51% 86.07% 85.67% -0.40%
MobileVLM 80.13% 80.15% 0.02% 82.88% 82.97% 0.09% 84.14% 83.81% -0.33% 81.67% 82.16% 0.49%
Qwen-7B 89.05% 89.06% 0.01% 90.15% 90.57% 0.42% 92.83% 92.77% -0.06% 87.60% 88.46% 0.86%
NVILA-8B 99.81% X% -X% 99.82% X% -X% 99.87% X% -X% 99.81% X% -X%

ty2py for LLaVA-7B—a 2023 model—was measured
at 851 ms on an NVIDIA A100 GPU with 40 GB of
VRAM [1], clearly exceeding the acceptable thresh-
old tpg for AV deployment. In contrast, the release
of NVILA in late 2024 marked a significant improve-
ment, reducing ¢z ,, to just 80 ms. This 10x reduc-
tion highlights the rapid evolution of VLMs toward
real-time readiness in AV perception pipelines.

Despite this progress, deploying VLMs on embed-
ded AV hardware remains challenging due to limita-
tions in compute power and energy efficiency. High-
performance models such as LLaVA-7B and NVILA,
though effective on server-grade GPUs, often require
substantial memory and parallel processing capabil-
ities that are impractical for in-vehicle deployment.
One potential solution to reduce hardware demands
is quantization—a widely used model compression
technique for LLMs that improves computational ef-
ficiency by converting high-precision data types to
lower-precision formats [23]. This process signifi-
cantly reduces memory usage and model size, mak-
ing it more feasible to run VLMs on edge devices.
However, it may also introduce quantization errors,
which could degrade precision [29]. We applied quan-
tization to LLaVA-7B, expecting lower resource us-
age. Although initially expected to reduce latency,
the quantization approach did not yield the desired
outcome; instead, when tested on the NVIDIA A100
40 GB [1], it exhibited latencies ranging from 0.851 s

Table 5: Traditional Models Accuracy under Adver-
sarial Attacks and Defense Strategies.

Attack Under-Attack Defense Post-Defense
Task Model Type Accuracy Strategy Accuracy
TSR EE%R B- Sh[iig]ow L77% Adversarial Training [30] 25.57%
JPEG Compression [20]
D Bit-Depth Reduction [(2] ~3%

ALC gi’glpllm» ?R\? 2.50% Gaussian Noise [61] (no effective

: ) Median Blurring [62] improvement )

Autoencoder [19]

VD YOLOv3 RA[‘I‘(’A 2.52% No Defense Proposed N/A

[7]

to 2.158 s and 11.657 s at full precision, 8-bit, and
4-bit levels, respectively. Based on our preliminary
analysis, we found that the main source of this is-
sue could be due to an increase in demand stemming
from the additional operations required to maintain
accuracy in image processing tasks.

Another complementary strategy is adaptive image
downsampling based on scene complexity. For exam-
ple, in visually simple highway scenes, input images
could be processed at lower resolutions to reduce com-
putational load, while complex urban scenes could
use higher resolutions to preserve important details.
This approach creates a trade-off between efficiency
and detection quality, as previously observed in ob-
ject detection for AVs [7]. By adjusting the input
resolution based on the type of scene, AV systems
can improve resource management while maintaining
reliable performance across different driving environ-
ments. In parallel, compression techniques such as
model pruning and knowledge distillation (KD) have
been successfully applied to reduce model size and
inference cost in vision tasks. For instance, Rosa et
al. [47] demonstrate that KD can yield a student
model that is over 90% smaller than its teacher net-
work while maintaining competitive accuracy in se-
mantic segmentation. These techniques can comple-
ment downsampling strategies, further improving the
feasibility of deploying VLMs on resource-constrained
AV hardware.

6 Conclusion

In this work, we present Vehicle Vision Language
Models (V?LMs) as a novel approach to enhance
the robustness of AV perception systems against ad-
versarial attacks. V2LMs outperform task-specific
DNNs by maintaining high adversarial accuracy with-
out requiring adversarial training, addressing a key
limitation of traditional defense methods. The study



evaluates two deployment strategies: Solo Mode,
where separate VLMs are fine-tuned for common AV
perception tasks such as TSR, ALC, and VD, as well
as Tandem Mode, which uses a single unified VZLM
for all three tasks, reducing storage requirements
while maintaining comparable performance. Exper-
imental results demonstrate that traditional DNN
models suffer performance drops of 33%-46% under
adversarial attacks, whereas V?LMs maintain signif-
icantly higher accuracy, with reductions of less than
8% on average. Additionally, this work explores the
feasibility of integrating VZLMs into AV systems,
proposing solutions such as model compression and
adaptive image downsampling to mitigate latency
challenges. This paper shows that V2LMs signifi-
cantly enhance AV perception robustness, offering a
promising path toward safer autonomous driving.
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